Laserfiche WebLink
<br />a. , <br />1J <br /> <br />ta2 <br />Qsi <br /> <br />Cov(Q ., Q .) <br />S1 SJ <br /> <br />otherwise. <br /> <br />for i=j <br /> <br />(19) <br /> <br />The increase of spring runoff from grouped basins, <br />6Q*, is given by <br />s , <br /> <br />6Q; = a16Qsl + aZ6QsZ+"'+ an Qsn <br /> <br />n <br />1: ai6Qsi' <br />i=l <br /> <br />(ZO) <br /> <br />where 6Qsi (i=l,Z,. ..,n) represents the increase in <br /> <br />spring runoff from an individual basin. Now impose <br />the restriction that <br /> <br />Q* <br />s <br /> <br />n <br />1: <br />i=l <br /> <br />n <br />1: Qsi <br />i=l <br /> <br />(Zl) <br /> <br />a,Q. <br />1 S1 <br /> <br />where Q; is the mean of the <br />the mean of the <br /> <br />values and Qsi is <br />impose the restric- <br />of the 6Qsi values, <br /> <br />Q* <br />s <br />Also <br /> <br />tion that 6Q; <br />i.e. , <br /> <br />Q . values. <br />S1 <br />is equal to the sum <br /> <br />6Q* <br />s <br /> <br />n <br />1: ai6Qsi <br />i=l <br /> <br />(ZZ) <br /> <br />n <br />1: 6Qsi <br />i=l <br /> <br />Finally the number of years, N*, for evaluation of <br />grouped basins is given by the following expression: <br /> <br /> n n <br />3. 84aQ* 3.84 1: 1: a, ,a.a. <br /> i=l j=l 1J 1 J <br />N* s <br />(6Q*)2 (6Q*)2 <br />s s <br /> <br />n n <br />1: 1: <br />i= 1 j =1 <br /> <br />a. ,a.a. (Z3) <br />1J 1 J <br /> <br />where the a, and a. are as yet arbitrary but sub- <br />1 J <br />ject to the constraints expressed by equations (Zl) and <br />(ZZ). Choose the ai's such that the number of years, <br /> <br />N*, is kept to a minimum value. Setting <br /> <br /> n n <br />f(a1,Ctz' ...J an) L L a. ,Ct.Ct. <br /> i=l j=1 1J 1 J <br /> n n <br />gl (Ct1,CtZ' Ctn) I (Q .Ct) ( \ Qsi) <br />.. ..J L <br /> i=1 S1 1 i=1 <br /> n n <br />gZ(Ct1,aZ' an) \" C3QsiCti) - ( \' 6Q .) <br />.. .. . , i L <br /> i=1 i=1 S1 <br /> <br />a new function is defined <br /> <br />F(al,CtZ" ,Ctn,Al,AZ)=f(al'CtZ'" ,Ctn)-Algl (al,aZ' .. ,an)- <br /> <br />AzgZ(al,Ctz,..an) <br /> <br />The ai's that make the objective function F(al,aZ,..,ad <br /> <br />in equation (Z4) minimum give the minimum value for N* <br />in equation (Z3). <br /> <br />By taking the partial derivative of F(al,aZ,..an, <br />Al,AZ) with respect to the Cti'S, AI' and AZ and setting <br />each derivative equal to zero, one obtains the system <br />of equations: <br /> <br />n n <br />of _ \' \' Q <br />o L akJ,CtJ. + l. aikc\ ~ Al sk - AZ6Qsk <br />a; - j=1 i=1 <br /> <br />Z <br /> <br />n <br />L akiCti - QskAl <br />i=1 <br /> <br />o <br /> <br />6QskAZ <br /> <br /> for k 1,Z,..,n <br />of n n <br />~ L Q .a. + ( L Qsi) 0 <br />i=1 S1 1 i=1 <br />of n n <br />as ~ 6Qs i Cl i + ( L 6Qsi) 0 <br />i=1 i=1 <br /> <br />~I <br /> <br />I <br /> <br />or in matrix notation <br /> <br />Zall <br />Za2l <br /> <br />2a12 <br />2a22 <br /> <br />2aln - Qsl - 6Qsl a1 <br />2a2n - QsZ - 6Qs2 Ct2 <br /> <br />o <br /> <br />o <br /> <br />2an1 2an2 2a - Qsn - ':] a 0 <br />nn n <br />Q~1 QsZ Qsn 0 Al d <l;,J ~ <br /> 1=1 <br /> n _ <br />~QSl 6QsZ 6Qsn 0 AZ ( L IIQ .) <br /> i=1 S1 <br /> (25) <br /> <br />The system of equation (25) is linear and its resolution <br />for the unknown ai's is obtained by the Gaussian <br /> <br />elimination procedure. Thus a procedure is described <br />that objectively selects the optimal group of basins of <br />a given size among a larger set. The procedure also <br />determined the optimal parameters of the combination of <br />runoff variables for minimum time evaluation. <br /> <br />(Z4) <br /> <br />It remains to apply this technique in practice to <br />the Upper Colorado River Basin. Before doing so, <br />Chapter IV describes the data used in the analysis. <br /> <br />16 <br />