Laserfiche WebLink
<br />iIJ""'''''''''' .- <br /> <br />."'"_.w_. _ <_'"'~_ <br /> <br />.,'. ~.'=, ,'j'. ~_'.W ,,",'iT;,." c,;..,.",. .:;..,C,..."""-.,~.."",,.;-...- . ;;.,,;;.:. .. -.. .,. . ......:.. ._'-:""'" <br /> <br />.~, ...._..:...'.-'.~-" <br /> <br />5.2 <br /> <br />Satellite Summary <br /> <br />It <br /> <br />Satellite imagery for each of the six <br />days was examined for approximately 2300 GMT, The <br />grid field used in calculating the vertical vel- <br />ocity was placed over the imagery and the cloud <br />systems in each element were classified according <br />to cloud class, meso-structure and synoptic type. <br /> <br />Some 104 grid elements were compared <br />for cloud class and the estimated vertical velo- <br />city. The cloud classes were divided into two <br />groups: (1) clear and small cumulus, and (2) <br />cumulus-congestus and cumulonimbus (Fig. 10). A <br />t-test was performed upon the estimated vertical <br />velocities of the two groups. It was found that <br />the null hypotheses was rejected at the .034 level. <br /> <br /> , <br /> . , , , <br />. , . ~ p ,. , .. <br />'16 ~ .k . <br /> '0 <br /> <br />!' <br />,. <br />n <br />H. <br />if · <br />" . <br />~. <br />, . . <br />. . . <br />, . . <br />, ,.' ...., <br />,.,."....... <br />. . . F . , . ,.. . .. . <br />{ <br />8 <br /> <br />i <br /> <br />-; <br /> <br />. , r <br />-io <br /> <br />CU" AND C8 <br /> <br />; <br /> <br />elF!. AND CU <br /> <br />. <br /> <br />. <br />. . . . <br /> <br />J <br />. . , . <br /> <br />. <br />. ., <br />. . . . <br />....... <br /> <br />. . <br />."0 <br /> <br />".i <br /> <br />:u <br /> <br />';0 <br /> <br />.:0 <br /> <br />'0 s 0 '5 <br />VlIlllCAl ViLJClTY C<M/liEe) <br />~ <br /> <br />- <br /> <br />Figure 10. Frequency distribution of <br />n~ber of grid elerrer.ts versus computed vertical <br />velocity for (1) clear and cumulus cases and <br />(2) cumulus-congestus and cumulonimbus cases. The <br />letter F represents those grid elements along the <br />front range or in eastern Colorado. <br /> <br />5.3 <br /> <br />Model <br /> <br />e <br /> <br />The model diagnosed a full range of <br />convective development from no clouds in the no- <br />lifting experiments on July 2, 1977 and August 24, <br />1977, to deep convection with n~Terous thunder- <br />storms in the case with 20 em s lifting on <br />August 24, 1977. On August 24, 1977, an intense <br />line of deep convection developed in the region <br />of preferred isentropic vertical lifting over <br />northwest Colorado (Fig, 7&8), The model simula- <br />tion of convective development in this case pro- <br />vides a good example of model response to meso- <br />scale lifting. The thermodynamic response to <br />lifting is shown in Figure 11. Here on a SKEW-T <br />log P diagram, we see the sequential change of <br />temperature and dew point for each hour as the <br />model simulates cloud-environment interactions <br />and lifting. The arrows indicate the direction <br />of change as the simulation proceeds, Note the <br />surface warming, and low level increase in dew <br />point temperature: however, again the dew point <br />increases due to the upward advection of moisture. <br />The relatively stable layer from 50 to 17 kPa is <br />adiabatically cooled and moistened by lifting. <br />In the cloud top region from 17 to 12 kPa, cloud <br />top evaporation results in a saturated super <br />adiabatic layer. The model diagnosed cloud top <br />height. visual (condensation level) cloud base <br /> <br />height, and dry thermal base height arro shown in <br />l~igure 12. The simulated convectivE' development <br />with top heights of 14 km agreed ,~cll with ob- <br />served radar tops. <br /> <br />rlNAL SOUNDING AT IS HR 0 ~IN <br /> <br /> <br />10 <br /> <br />.70 <br /> <br />"0 <br /> <br /> LEGEND <br /> . . CASE I <br /> .. CASE 2 <br /> . , CASE 3 <br /> .. CASE ~ <br /> 20 . . CASE .S <br />if 30 Ii <br />~ <br />u <br />; ~O <br />u <br />'" <br />.. <br /> 50 <br /> 60 <br /> 70 .Q <br /> ag <br /> <br />1110 <br /> <br /> <br />-il <br /> <br />TEMPERATURE I C I <br />.at 2.1 "..a.,.. .....to. I'V1.JUt.1CIl.XII. 1l'l.... ,_ II l'!t ~ .~..... tL JX\Sl11. <br /> <br />Figure 11. .SKEWT-T, log p diagram showing <br />the thermodynamic response to lifting fOlr August <br />2.', 1977. <br /> <br />CLOUD BASE AND TOP VERSUS TIME <br /> <br /> If.a <br /> It.D <br /> U.O <br /> 10.0 <br />~[ <br />.' ... <br />li <br />~1 <br /> ... <br /> t,. <br /> 2.. <br /> o.~ " <br /> <br />..- - - -.... - - -~. -...... <br /> <br />/ <br />/ <br />/ <br />/ <br />/ <br />/ <br />/ <br />/ <br />/ <br />/ <br /> <br />o <br /> <br /> <br />o <br /> <br />o <br /> <br />Ii <br /> <br />Ii <br />T1r'C ILSTI <br /> <br />-r-- <br />.. <br /> <br />" <br /> <br />1'(;50 2.1 rrJ..2'5I.2f1. .......10. JVT-roo.1lXl.2OQ. OT..{,Q. ..... II IS ~.2S AIQIO- a. 11081118 <br /> <br />I"igure Ii. ':.'i: ..,-::"i:.ht plot of diagnosed <br />cloud top height : 6: .::).~'~,.:.:i. cloud base height <br />(0) and dry thermc::'. :.:,~c :,.z:ight : 0) . <br /> <br />184 <br />