Laserfiche WebLink
<br />I <br /> <br />46 <br /> <br />I <br /> <br />I <br /> <br />"'" <br /> <br /> <br />I <br /> <br />0::: <br /> <br />I <br />I <br /> <br />o <br /> <br />r/TL <br /> <br />I <br /> <br />Figure 3.6 <br /> <br />Autocorrelation Functions from an aircraft (RA)', <br />Eulerian (RE) and Lagrangian (RL) frame of <br /> <br />I <br /> <br />Values of S vary from 1 to 5. Tennekes and Lumley (1972) have shm.;rn that <br /> <br />I <br /> <br />S = 1 for homogeneous turbulence in an incompressible fluid. Panofsky and <br /> <br />Mizuno (1974) concluded that S varies from 2.0 to 4.5 based on data from <br /> <br />I <br /> <br />multiple tOloJers in Nebraska. In this study, S Hill be assumed to be 3. <br /> <br />I <br /> <br />L L <br />It may be shown that E, (~) and R, (l) are a fourier tr2.nsform pair ~oJhere <br />l l <br />E~ (w) is the Langrangian power density spectrum per unit frequency in the i <br />l <br /> <br />I <br /> <br />direction. <br /> <br />I <br /> <br />2 ,2 foo }{L (T) l' WT <br />EL (w) = ? d <br />i - n Ui 0 i e T <br /> <br />(3.7) <br /> <br />I <br /> <br />,2 <br />2 ui TL <br />n 1 + (w TL)2 <br /> <br />I <br /> <br />It is implicit in these results that the power density spectrum is <br /> <br />not frequency (w) to the -5/3, but rather w to the -6/3 or -2. Later, <br /> <br />I <br /> <br />we "li11 examine the pOloJer density spectrum data and determine Hhether the <br /> <br />I <br /> <br />clatc! fits the -5/3 or -2 pmoJer law. <br /> <br />Substituting the empirically determined Lagrangian exponential auto- <br /> <br />I <br />II <br />I <br /> <br />correlation function (Equation 3.~) into the modified Taylor's diffusion <br />