Laserfiche WebLink
<br />JUNE 1983 <br /> <br />1069 <br /> <br />UN, FARLEY AND ORVILLE <br /> <br />2 <br /> <br />( )1/2 <br />UDR = am; , <br /> <br /> <br />( )1/2 <br />UDS = em; , <br /> <br />, 1/2 <br />U = (4gPG) DI/2 <br />DG 3CDP G . <br /> <br />The terminal velocity U DR bf rain is suggested by Liu <br />and Orville (1969) who performed a least squares <br />analysis of Gunn and Kinz~r's data (1949). The con- <br />stants a and bare 2115 cml-b S-1 and 0.8, respec- <br />tively. The terminal velocity U DS of snow is based on <br />the relations suggested by Lpcatelli and Hobbs ( 1974). <br />Specifically, UDS is that appropriate for graupel-like <br />snow of hexagonal type, with the constants c and d <br />being 152.93 cml-d S-I arid 0.25, respectively. The <br />square root factor involving air density allows for in-. <br />creasing fallspeeds with increasing altitude, similar to <br />Foote and du Toit (1969). The terminal velocity UDG <br />of hail is proposed by Wisner et al. (1972), with the <br />drag coefficient CD assume:d to be 0.6. <br />Following Srivastava (1967), we define mass- <br />weighted mean terminal v~locities as <br /> <br />U = f UD,l(D)dD/I, (10) <br /> <br />where U D is the terminal yelocity of a precipitating <br />particle of diameter D, I(~) is the mixing ratio of a <br />precipitating particle of diapleter D, and I is the mix- <br />ing ratio of a precipitating field. Applying (10) to each <br />precipitating field, we obtain the mass-weighted mean <br />terminal velocities of rain, : snow and hail: <br />, <br /> <br />_ af(4 +' b) (pO)1/2 <br />UR - 6)..b . <br />R, P <br /> <br />. _ cf(4 +:d) (pO)1/2 <br />Us - 6)..d ' <br />S' P <br />, <br /> <br />UG = r(4, 5):( 4gPG)1/2 <br />6)..~5 ; 3CnP <br /> <br />, <br />The mass-weighted mean t~rminal velocities of rain, <br />snow and hail are shown i~ Fig. 2. <br /> <br />2) WATER CONSERVATI~N EQUATIONS <br /> <br />Four conservation equations are considered here: <br />, <br /> <br />aq V : <br />at = -y. q + V. KhVrI - PR - Ps - PG, <br />a~ : <br />- = -Y.VIR + V.K VIR <br />at m <br /> <br />I <br />I <br /> <br />I <br /> <br /> <br />l'" <br />:.. .J...'l,,-,L., < <br /> <br />: 1 a <br />+'PR + - -a (URIRP), <br />I P Z <br /> <br />(7) <br /> <br /> <br />(8) <br /> <br />-- - p=o.Sxl03 9 cm-3 <br />.-.-. p=O.7 x 103 9 cm3 <br />18 ....... p=0.9xI03 9 cm-3 <br />- p=163 9 cm-3 ..................... <br />...- <br />.-- <br />./ <br />./ <br />,/ <br />,/ <br />/ <br />/ <br />/ <br />14 I <br />I ./ <br />I / <br />I / <br />/ <br />E .I <br />- / <br />>- 10 . <br />l- <br />t) <br />S <br />~8 <br /> <br />--- <br /> <br />-- <br /> <br />16 <br /> <br />H:.~._._._._-'-'_. <br />.-' <br />...-' <br />/' <br /> <br />(9) <br /> <br />--- <br />--- <br />...-_---RAIN _._.-.-. <br />....../ -.- <br />/' ---.----.- <br /> <br /> <br />6 ;I;;~ <br /> <br />4 V C;Nnw <br />: SNOW _ _ _ _ _ _ _ _ _ <br />----- <br /> <br />-~.,. . <br /> <br /> <br />-- <br />2 ..;,~-;:-::-::- <br /> <br />-'-'-'- -'-'-'-' <br />.......................... <br /> <br />.-'-'-' <br />............. <br /> <br />00 <br /> <br /> <br />4 <br /> <br />FIG. 2. Mass-weighted mean terminal velocities for rain, snow <br />and hail. The four curves from 9 to 19 m S-I are for hail. The four <br />curves from 3 to 10 m S-I are for rain. The remaining four curves <br />are for snow. <br /> <br />(11) <br /> <br />als <br />-= -Y.V/s+V.K VIs <br />at m <br /> <br />(12) <br /> <br />1 a <br />+ Ps + - -a (UsIsp), (16) <br />P z <br />alG <br />-= -Y.VIG+V.K V/G <br />at m <br /> <br />(13) <br /> <br />1 a <br />+ PG + - a- (UGIGP), (17) <br />P z <br /> <br />where q = lew + IC/ + r; lew, IC/, IR, Is, IG and rare <br />the mixing ratios for cloud water, cloud ice, rain, <br />snow, hail and water vapor, respectively; and PR, Ps <br />and P G are the production terms for rain, snow and <br />hail. These terms will be considered in more detail <br />in the next several subsections. Only the final form <br />of the microphysical equations will be presented here. <br />For a more detailed explanation of the derivations, <br />the reader is referred to Wisner et al. (1972) or Chang <br />( 1977). <br />The last terms in (15), (16) and (17) are the fallout <br />terms. All of the first terms on the right-hand side are <br />advection terms; the second terms are diffusion terms. <br /> <br />(14) <br /> <br />(15) <br />