Laserfiche WebLink
<br />[A]t - [A]O - k'lt <br /> <br />(S.1. 7) <br /> <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br />I <br /> <br />30 <br /> <br />The general solution for a-n (nfl) is <br />[A]~l _ [A]~-l - (k'l[A]~-l)(n-l)([A]~lt) <br /> <br />(3.1.6) <br /> <br />where subscripts t and 0 represent concentrations at time t and initial <br /> <br />concentrations respeotivley. For physioal prooesses, the exponent, a, <br /> <br />is often zero or one, giving the simple solutions <br /> <br />[A]t - [A]o exp(-k'lt) <br /> <br /><3.1.8) <br /> <br />If a-O and y-l, then eq. 3.1.4 becomes ~ -k'2 for whioh the solution <br />is <br /> <br />[Y]t - k'2t U.l.9) <br /> <br />where the initial concentration of produot Y is zero. Substitution of <br /> <br />the first order rate, eq 3.1.8, into eq. 3.1.4 and subsequent <br /> <br />integration yields <br /> <br />k' <br />[Y]t - ~ [A]o (1 - exp(-k'lt)) <br />1 <br /> <br />U .1.10) <br /> <br />tor the first order reaotion. <br /> <br />For the zero order reaotion, eq. 3.1.', a plot can be oonstructed <br /> <br />of [Y]t versus time which will yield a straight line with a slope <br />oorresponding to rate constant k' 2' Obtaining the rate constants for <br />the first order reaction, eq. 3.1.10, is more oomplioated. At the <br /> <br />effective end of the reaction, t-~, <br /> <br />k' <br />[Y]~'" ~. [A]o' <br />1 <br /> <br /><3.1.11) <br />