Laserfiche WebLink
<br />ApPENDIX I <br /> <br />The ASCE Task committee on Definition of Criteria for <br />Evaluation of Watershed Models of the Watershed Manage- <br />ment Committee, Irrigation and Drainage Division (ASCE <br />Task Committee, 1993) has recommended the use of several <br />goodness-of-fit criterion for evaluating model performance. <br />The deviation of runoff volumes Dv, is one of the more simple <br />tests and is computed as follows: <br /> <br />D (%) = V-V' x 100 <br />v V <br /> <br />[IA] <br /> <br />where V = the measured annual or seasonal runoffvolume, <br />and <br />V' = the model computed annual or seasonal runoff <br />volume. <br /> <br />The second basic goodness-of-fit criterion is the Nash- <br />Sutcliffe coefficient, R2, expressed as: <br /> <br />R2 = 1 - <br /> <br />n <br /> <br />L (Q.-Q'l <br />1 1 <br />1=1 <br /> <br />[2A] <br /> <br />n <br /> <br />L (Q. _ Q)2 <br />1 <br />1=1 <br /> <br />In equations [IA] and [2A] above, Dv = 0 and R2 = 1, would <br />indicate a perfect fit respectively. <br /> <br />In equation [2A], ifR2 = 0, the model is doing no better than <br />using the average of the observed runoff. R2 = 1 denotes <br />perfect agreement between observed and simulated values. <br /> <br />Table 1 (A) summarizes computations of Dv and R2 for the <br />South Platte River at Julesburg for the 1947-1970 calibra- <br />tion period. Calculations ofDv for the 1975-1994 validation <br />period are summarized in Table 2 (A). <br /> <br />Table 1 (A) <br />Computation of: (1) Deviation to Runoff Volume, Dv and <br />(2) Nash.Sutcliffe Coefficient for Simulated 1975. 1994 Annual Water Yield at Julesburg, CO <br /> <br />Year V V' V-V' (V-V') 2 (V-V) (V-V) 2 Dv (%) <br />1975 255.4 255.1 0.3 .09 -205.66 42296.04 0.12 <br />76 161.8 140.3 21.5 462.25 -299.26 89556.55 13.29 <br />77 110.2 83.2 27.0 729.00 -350.86 123102.74 24.50 <br />78 72.4 144.7 -72.3 5227.29 -388.66 151056.60 -99.86 <br />79 474.5 634.3 -219.8 48312.04 13.44 180.14 -46.32 <br />1980 1369.8 1472.5 -102.7 10547.29 908.74 825808.39 -7.50 <br />81 232.7 64.2 168.5 28392.25 2378.19 5655787.68 72.41 <br />82 138.6 86.0 52.6 2766.76 -322.46 103980.45 37.95 <br />83 1433.1 1478.1 -45.0 2025.00 972.04 944861.76 -3.14 <br />84 832.7 1292.7 -460.0 211600.00 371.64 138116.29 -55.24 <br />1985 802.6 797.0 5.6 31.36 341.54 116649.57 .70 <br />86 496.0 588.5 -92.5 8556.25 34.94 1220.80 -18.65 <br />87 740.7 601.6 139.1 19348.81 279.64 78198.53 18.78 <br />88 392.8 239.0 153.8 23654.44 -68.26 4659.43 39.15 <br />89 211.9 102.1 109.8 12056.04 -249.16 62080.70 51.82 <br />1990 266.6 192.1 74.5 5550.25 -194.46 37814.69 27.94 <br />91 264.3 83.3 181.0 32761.00 -196.76 38714.50 68.48 <br />92 370.9 295.1 75.8 5745.64 -90.16 8128.82 20.44 <br />93 359.4 181.5 177.9 31648.41 -101.66 2033.20 49.50 <br />94 234.8 120.8 114.0 12996.00 -226.26 51193.59 48.55 <br />Total 462410.17 8475440.97 <br />Mean 461.06 12.15 <br />Std. Dev. 389.34 43.14 <br /> <br />R2 = 1 - 462410.17 = 1 - .0546 <br />8475440.97 <br />R2= .9454 <br />R =.9723 <br /> <br />Page 10 <br />