Laserfiche WebLink
<br />J tJ 1.. J .,., '1 <br /> <br />" <br /> <br />compute the mean, SO, and skew of the logs of the data ~y:= mean(y), cry:= Stdev(y), Cy:= skew(y) <br /> <br />Fitting data to an LP III distribution is somewhat analogous to fitting data to a log-normal distribution. If the <br />data itself fits an LP 3 distribution then the logs of the data will fit a Pearson III distribution. This is the same <br />procedure that is followed when trying to fit data to a log normal distribution, we fit the logs of the data to a <br />normal distribution. <br /> <br />The equations relating the distribution parameters, <x, p and E to the moments of the data are: A = ~ , <br />cry <br /> <br />( 2 )2 P <br />p = - and E = ~y - -. These can be solved simultaneously for <x, p and E using a solve block. <br />Cy A <br /> <br />initial guesses for parameters E:= 1, p := 5, A:= 1 <br /> <br />Given <br /> <br />A=~ <br />cry <br /> <br />~ =( ~r <br /> <br />- P <br />E-~ -- <br />Y A <br /> <br />soln := Find(A, p , E) <br /> <br />[4,844 ] <br />soln = 7.506 <br />6.206 <br /> <br />rename each element of the soln vector: A:= solnO, p := soln1 and E := soln2 <br /> <br />Now plot the distribution using a range variable: y:= 1 , 1.1.. 10 <br /> <br />~ ~-1 <br />A '(y-E) ,exp[-A,(y-E)] <br />p(y) := r(P) <br /> <br />log pearson type III example problem <br />bulletin 17.mcd <br />last save 11/14/2003/12:01 PM <br /> <br />C:\MyFiles\Mathcad application areas <br />\Statistics\log Pearson Type III aka Gamma <br />distribution tiles\ <br />11/14/2003/12:07 PM <br /> <br />20t 5 <br />