<br />. \...
<br />
<br />~:~.~\~ :~~~;::~~:.'.':;
<br />'. .: :.1i:>'~. ,
<br />
<br />DRAINAGE WATER REUSE STRATEGY
<br />
<br />47
<br />
<br />- ;., /' .
<br />:-"',-!,
<br />-. '. ~
<br />
<br />", ,~
<br />
<br />.
<br />
<br />I'\j
<br />cc
<br />tv
<br />en
<br />
<br />Comparison of simulation results for the three different strategies of irrigation and drainage man-
<br />agement (I. II, III)
<br />
<br />TABLE 4
<br />
<br />'.- .. .'.
<br />
<br />2:Vetll.
<br />
<br />IV1....b
<br />
<br />2:VdwC
<br />
<br />Yield IOBSd
<br />
<br />v .
<br />~ .
<br />
<br />ECrwr
<br />
<br />,....
<br />
<br />;;~~~~~~
<br />
<br />Strategy
<br />
<br />Project 3
<br />
<br />Project 4
<br />
<br />':-.',;.'
<br />... ...;'., . .~ :...., ....:.:..
<br />':-.: ", :;:::~:: .,.:';- ;..: :.: '::';'::' ".< :~~:~r;
<br />:......,.-.. .'
<br />
<br />.;..'......
<br />::'"..
<br />
<br />I
<br />II
<br />III
<br />
<br />417.6
<br />417.6
<br />417.6
<br />
<br />495.5
<br />427.8
<br />427.8
<br />
<br />77.9
<br />10.2
<br />o
<br />
<br />2
<br />4
<br />o
<br />
<br />20
<br />45
<br />o
<br />
<br />82.4
<br />82.4
<br />72.2
<br />
<br />3.0
<br />3.0
<br />0.5
<br />
<br />, '. '.'
<br />~ ~ ' :'. .'.1 . . .'
<br />~ :..... ..: ..- . ".'. . ;. :~{-':':,
<br />
<br />
<br />':.:;"~':;;~;.>;;k';::/;:',';:,:
<br />"::'.";\;":;0';:>:':;4,'/;; .
<br />
<br />.:"'.:':.';'<~t~+:.~;:'~.s..;..'
<br />.' ." .... .~.
<br />, ....,. ,','.'
<br />
<br />0!~~1i~
<br /><to;::'~:;:';S~~::;':~q.k~:::~
<br />
<br />':--~:.::\;:~;/.. .. :'>.';,
<br />
<br />~~f~1~.~.~~..~....~~.'.;
<br />
<br />
<br />":,'':-. :'..
<br />
<br />..2: Vel ==cumulative volume (units) of water used by crops in evapotranspiration in all four projects.
<br />b2: Vjw=cumulative volume (units) of water diverted (pumped) from river for irrigation in all four
<br />projects.
<br />c2: Vdw==curnulative volume (units) of drainage water discharged (pumped) back to river.
<br />dCumulative loss of crop yield within Projects 3 and 4.
<br />.V rw== Volume (units) of river remaining in stream below Project 4.
<br />rEC~=EC of river below Project 4 (dS/m).
<br />
<br />but also the ultimate volume of drainage water needing disposal (or desalting)
<br />can be minimized and distributed equally between all projects. In this strategy,
<br />all areas have water of equal quality to use and each shares equally in the
<br />disposal problems and not progressively the downstream users as is typically
<br />the case (I).
<br />The preceding case studies illustrate the potential disbenefits of blending
<br />saline and good-quality waters and the need to consider the consequences of
<br />diluting drainage waters to meet water quality standards on the supply of plant-
<br />available water. The advantages of the "interception, isolation and reuse"
<br />strategy (III) relative to the conventional blending strategy are obviously many,
<br />as was shown. In these simulations, conservation of salt was assumed in the
<br />calculations. In the real world, salt- loading of the river would probably be greater
<br />than that shown, and more so for strategy I compared to II and III; hence the
<br />benefits of the latter strategy is likely underpredicted in these simulations.
<br />More realistic calculations of the salt-loading processes could .be made, as has
<br />b~en done'elsewhere (Rhoades and Suarez, 1977). .
<br />The results of the four case-studies clearly show that adding saline waters
<br />to good quality water supplies reduces the volume of the good-quality water
<br />supply that can be consumed by salt-sensitive crops, The amount of such re-
<br />duction will depend upon the relative volumes and concentrations of the re-
<br />ceiving and waste waters and upon the tolerances of the crops to be irrigated.
<br />In the previously discussed case-studies, it was assumed that the fraction of
<br />water usable for crop production was limited by EC;. Obviously, more water
<br />use can be achieved, if loss of yield is permitted, When the growth-limiting
<br />factor is salinity, the ultimate fraction of water in a supply that can be used in
<br />crop growth is:
<br />
<br />...... '. ".'
<br />
<br />,:.., "
<br />
<br />t/.:.~,,:;::>,: .~'.: . ~ ..
<br />- '.' .....'.::;,:.':;-'\~:~:...;;.?,.
<br />;/;~>~',:,;c' ..'. " ':., ~_ .
<br />.:~ ~:~;.:~~.'..;.~,..~'\:}:.:::.'.';' ..;. .": . :::~:\:,:':<
<br />.....
<br />~':.: {;">'.
<br />
<br />. ':.-~ - ~. . .....
<br />::. .'. ~.' ....~-:.:. . ~'" . .... .>--:::
<br />....: .' -:~. /: .'
<br />
<br />. :'~.: '-::'-.:
<br />
<br />,,/. ....'-. .~.
<br />
<br />. .' r':: '~.;...~:;{/>-;
<br />..' ....i'~. '.':'.'
<br />. .~',., .
<br />
<br />
<br />'. .....
<br />':'.:'}.::i:~:
<br />
<br />:";:';"..'
<br />
<br />.... .
<br />....,..::.
<br />
<br />
<br />.'....,
<br />
<br />
<br />.;:.-,;>' ""-. ..-,....
<br />. :.:::-;~~ ~.:~:.;:;. :;',::::~,,:';'/'. :~/~ ':'::' / ;:,..::< :;:~~,.~:~ '.' .
<br />..' :,-~". ,.".., <~.' ..:;:'.':. \~ ~ ....'
<br />.-... . ..'. .~,.:; . ". -' .; . ~-~. ,:";. "
<br />. , _. ._~.4 .;....
<br />,..:'('>:::"'!...';".-,. ":.'
<br />
<br />""-':""
<br />
<br />.'~' .
<br />
|