Laserfiche WebLink
<br /> Case 2. Increasing dp <br />N d v min [dpO_ (::~)' I ::~ < 0] ................ (271 <br />00 = <br />....... p <br />~. <br /> Case 3. 'Toad.9:P. <br /> 0] <br /> ~. v = min - ~::~ J I 8si < . . . . . . . . . . . . . . . . . . (28) <br /> p 8~p <br /> <br /> <br />The next possible limitation on the change in the decision <br />or slack variables is the forcing of a previously inactive <br />constraint into an active role in the problem. In order to <br />facilitate this analysis, the constrained derivatives of the <br />loose slack variables is computed. Again, three conditions <br />must be considered: <br /> <br />Case 1. <br /> <br />d v__ <br />mal{ <br />p <br /> <br />Decreasing d <br />p <br />[ (~+) 0 <br />dp'- (::!j <br /> <br />18f1 <br />Cd <br />p <br /> <br />,,] <br /> <br />. . . . . . . . . . . . . . . . (29) <br /> <br />Case 2. <br /> <br />Increasing <br /> <br />d v= min <br />p <br /> <br />[de' - <br /> <br />dp <br />o <br />(~+) <br />~ <br /> <br />(8f1 )0 <br />8dp <br /> <br />u+ <br />~ <br />Cd <br />P <br /> <br />, 0] ............. (30) <br /> <br />Case 3. Increasing ~p <br /> [- (~+) 0 0] ............ (311 <br />~ v ~ 8f1 <br />= min ( 8f1 J <br />p < <br /> 8cil <br /> 8~p p <br /> <br />^ final limitation which should be noted is when a decrease <br />in dp is to be made and neither condition above is violated <br />before non-negativity is encountered. In such a case, the <br />maximum decrease would be - dp assuming the non-negativity <br />conditions hold. Once this and the other values of dp and 9p <br />have been made, the most limiting case is evaluated. <br /> <br />16 <br />