Laserfiche WebLink
<br />Iodide <br />(mgikg) <br /> <br /> ,'1 <br /> -' <br /> ~l; <br /> ~ j <br /> :, <br /> '-~ <br /> '-;i <br /> ;1' <br /> " <br /><~ -, -J <br /> 'I; <br /> -i <br /> .:{ <br /> -', <br /> , <br /> :]' <br /> 'J <br /> ,J- <br /> " <br /> ;J <br /> '-' <br /> "'J <br /> Ii <br /> );; <br /> :t <br /> ,'Jr <br /> " <br /> 'I <br /> ,;1 <br /> ., <br /> 'J <br /> '"1 <br /> .t <br /> [ <br /> 1 <br /> ;, <br /> ,[ <br /> J <br /> J <br /> <IE <br /> "~ <br /> " <br /> , <br /> "~ <br /> , <br /> 1 <br /> , <br /> ~ <br /> -~ <br /> I <br /> " <br /> ;t: <br /> ii <br /> '~ <br /> , <br /> ,it <br /> '.',~ <br /> I <br /> ,1 <br /> ,'~ <br /> ',~ <br /> I <br /> >, <br /> 3' <br /> '~ <br /> ';4 <br /> ~ <br /> " <br /> ~ <br /> li <br /> " <br /> ,~ <br /> .~ <br /> ~ <br /> "''ll <br /> " <br /> -~~ <br /> ' '~ <br /> >] <br /> ~f1 <br /> '" <br /> ?J <br /> ~ <br /> .., <br /> t <br /> <br />Salinity Increases in the Navajo Aquifer in' Southeastern Utah <br /> <br />TABLE 1. Chemical Data from Ground. and Surface-Water Samples and Well-Depth Data <br />Collected in and Adjacent to the Study Area (cont'd,) <br /> <br />[Field site location and explanation shown in Figure 1; dim/s, degrees/minutes/seconds; g/cm3,' grams per cubic centimeter; <br />mglkg, mil1i~ms per kilogram; permil, per thousand; -, not determined; <, less than; ibIs; feet below land surface] <br /> <br />Well depth; dashes indica1;e well log data are absent and well is presumed to yield water from Navajo aquifer; a depth exceeding 5,000 feet <br />indicates original depth of oil test hole - well plugged back to Navajo aquifer; >, minimum plumbed depth, no well logs available.' <br /> <br />Del Del Wen <br />Oxygen-IS Deuterium Depth <br />(permil) (permil) (ibis) <br /> <br />N <br />~ <br />(0 <br />~ <br /> <br />Field <br />Site <br /> <br />Lon~tude <br />(d/p>Is) <br /> <br />Bromide <br />(mgikg) <br /> <br />Chloride <br />(mgikg) <br /> <br />Latitude <br />(d/mls) <br /> <br />Density <br />(glcm3) <br /> <br /> Alluvial Aquifer <br />A2 371301 lOe1157 0,995 0,04 0.008 16 -13.15 -96.0 <100 <br /> Oil-Field Brine <br />PRD5 371120 lOel643 1.047 190 10.5 46,000 -7.58 -72,3 <br />PRD4 371254 10~1744 1.058 260 16,1 45,000 -5,60 -68,5 <br />PRD2 371538 10$1206 1.051 260 17.1 42,000 -7.51 -72,1 <br />PRD3 371747 1090453 1.116 360 42,1 99,000 2.19 -42,0 <br />PRDl 371752 1091544 1.054 270 16,1 46,000 -K70 -79.0 <br />M-44 3,080 241,000 <br />M_64 1,150 259,106 <br />M_74 1,612 249,300 <br />M_1l4 3,000 45,000 <br /> Non-Oil-Field Brine <br />4E5 72 127,100 <br />BE6 73 129,300 <br />12E5 74 126,250 <br /> <br />lWater flows outside of casing. _ <br />2Water flows from around pt~ged and abandoned marker. . <br />3Water flows from open casilW below land surface. <br />4Data collected from sites north of the study area near Moab, Utah, in the Paradox Basin. Data compiled from Mayhew and- Heyt- <br />mum (1965), , <br />5Dats collected from sites northeast of the study area in Paradox Valley, Colorado. Data compiled from Rbsenbauer et al. (1992). <br /> <br />RESULTS AND DISCUSSION <br /> <br />Bromide- To-Chloride Ril-tios <br /> <br />Bromide-to-chloridll weight ratios were used to <br />determine different conservative chemical signatures <br />of the OFB and non-OrB end-member waters. These <br />constituents have been: used successfully in previous <br />ground-water salinity.studies to differentiate OFB <br />from non-OFB waters (Whittemore, 1988; Richter and <br />KreitJer, 1991) and haye two useful characteristics. <br />Neither constituent gen:eralIy participates in chemical <br />reactions in non-brine;systems (Whittemore, 1988). <br />Bromide is enriched ip organic materials (Whitte- <br />more, 1988; Maida, 19$9), possibly providing consid- <br />erable differences in brpmide concentrations between <br />samples ofOFB (enrich.d with organic materials) and <br />non-OFB (limited in organic materials) waters. <br />Bromide and chlorid~ concentrations in water sam- <br />ples collected from thlo Navajo aquifer, San Juan <br /> <br />River, adjacent allrtvium, and Paradox Formation <br />were compared with the bromide-to-chloride ratio of <br />modern ocean water of 0.003.44 (Figure 4). In geIleral, <br />samples from the San Juan River and a well'complet- <br />ed in the shallow alluvium plot close to the ratio of <br />modern ocean water, suggesting an atmospheric bro- <br />mide source, primarily' as sea spray. Water samples <br />from the Navajo aquifer with a chloride concentration <br />less than or equal to 60 milligrams per kilogram <br />(mg!kg), in general, plot close to the ratio of modem <br />. ocean water (mean = 0,0037, n = 13); however, as the <br />chloride concentration increases, most of the samples <br />plot below the ocean water ratio with a mean bro- <br />mide-to-chloride ratio of 0.0014 (n = 35). Non-OFB <br />samples become depleted in bromide relativ6 to mod- <br />ern ocean water, possibly indicating a limited amount <br />of organic matter and relatively small bromide con- <br />centrationsin chloride minerals. According to Whitte- <br />more (1988), halite formed during the latter stages of <br />ocean-water evaporation has a bromide-to.chloride <br /> <br /> <br /> <br />1125 <br /> <br />WATER RESOURCES BULLETIN <br /> <br />",,~f' -,,, <br />